Gears App

Modeling a Compound Planetary Gearset

https://drivetrainhub.com

2021 © Drivetrain Hub LLC

Overview

Learn how to model a compound planetary gearset and simulate its powerflow.

Table of Contents

- 1. Modeling
- 2. Analyzing
- 3. Integrations

MODELING

Create Model

- 1. In a web browser, open <u>Gears App</u>.
- 2. By default, the **File Explorer** will open to manage any existing models.
- Create a new model by clicking the New ribbon button.
- Once the new model opens, click the Model Info ribbon button to edit the model name.

TIP: Firefox or Chrome internet browser is recommended.

Create Gears

- 1. To create a new gear, from the **Model** ribbon tab, click the **External** button.
- 2. A new Gear Modeler tab opens.
- Define the Sun Gear as specified on slide 7 and click ✓ to accept.
- 4. Repeat these steps for the *Planet Pinion* and *Planet Wheel*, per slide 8.
 Three (3) instances of each gear will be used, as shown later.

HINT: Every gear created is automatically added to the Gear Library, an organization-wide collection of gears.

TIP: To insert a gear previously created, go to the Gear Library, find the gear, and click **Insert**.

File Viev	N Mod	el An	alysis	Build	
Model	6	Pa	art		
i	(ð		0		
Info	Extern	al Internal	Carrier	Shaft	
Gear Modeler					
Sun Gear 20-R20		CMP-PL	3-H	^	+
Sun gear for compou	ind planetary.				
Sun gear for compou	nd planetary.				
		T	th Form	Tooling	
Geometry		100		rooming	
Geometry Module _n	2 mm	Pressure anglen	20 de	eg	
Geometry Module _n Helix angle	2 mm 20 deg	Pressure angle _n Number of teeth	20 de 20	29	

Tip diameter

Work piece dia. 50

Get tool data

Dedendum coeff 1

Geometry

Tooling

File

Short / Long Lead

🗹 Select tool 🗸

Root diameter

Bore diameter

Pressure anglen

Addendum coeff

Outter Data

Viewer

Facewidth 25

20

Cutting method Generating ray

1 25

Sun Gear ..

Create Ring Gear

- 1. To create a new gear, from the **Model** ribbon tab, click the **Internal** button.
- 2. A new **Gear Modeler** tab opens.
- Define the *Ring Gear* as specified on slide 7 and click ✓ to accept.

HINT: Every gear created is automatically added to the Gear Library, an organization-wide collection of gears.

TIP: To insert a gear previously created, go to the Gear Library, find the gear, and click **Insert**.

rile viev	V MOC	aei An	alysis	Bu	IIId
Model		Pa	art		
i		H 🔾	0		
Info	Exter	nal Internal	Carrier	Shaft	
Gear Modeler					
Ring Gear 79-L10		CMP-PL	3-H	^	₩
Ring gear for compou	nd planetary.				
ometry		Тоо	th Form 🚺 To	ooling	
Modulen	2 mm	Pressure anglen	20 deg		
Helix angle	-10 deg	Number of teeth	79		
Profile shift coeff.	-0.2	Pre-finished tt _n ⊡	2.8504164661 mm		0
Root diameter	166.21527965 mm	Tip diameter	157.21527965 mm		0
Rim diameter	185 mm	Work piece dia.	150 mm		Geometry
Facewidth	25 mm				Tooling
L Cutter Data			Short / Long Le	ad	File
Cutting method	Generating pir \smallsetminus	Get tool data	$\ensuremath{\boxtimes}$ Select tool $\ensuremath{\smallsetminus}$		
Pressure angle _n ⊡	20 deg	Number of teeth	31		

Gear Geometry

Name	Sun Gear	-
Module _n	2	mm
Pressure angle _n	20	deg
Helix angle	20	deg
Number of teeth	20	-
Profile shift coeff.	0	-
Bore diameter	20	mm
Work piece dia.	50	mm
Facewidth	25	mm

Cutter Data

Cutting method	Rack generation	-
Pressure angle _n	20	deg
Addendum coeff.	1.25	-
Dedendum coeff.	1.00	-
Protuberance size	0	mm
Protuberance angle	0	deg
Tip radius coeff.	0.25	-

HINT: See our notebook on planetary gears for help calculating valid tooth counts in a planetary gearset.

Name	Ring Gear	-
Module _n	2	mm
Pressure angle _n	20	deg
Helix angle	-10	deg
Number of teeth	79	-
Profile shift coeff.	-0.2	-
Rim diameter	185	mm
Work piece dia.	150	mm
Facewidth	25	mm

Cutter Data

Cutting method	Pinion generation	-
Pressure angle _n	20	deg
Number of teeth	31	-
Addendum coeff.	1.25	-
Dedendum coeff.	1.00	-
Protuberance size	0	mm
Protuberance angle	0	deg
Tip radius coeff.	0.25	-

Gear Geometry

Name	Planet Wheel	-
Module _n	2	mm
Pressure angle _n	20	deg
Helix angle	-20	deg
Number of teeth	37	-
Profile shift coeff.	0	-
Bore diameter	20	mm
Work piece dia.	85	mm
Facewidth	25	mm

Cutter Data

Cutting method	Rack generation	-
Pressure angle _n	20	deg
Addendum coeff.	1.25	-
Dedendum coeff.	1.00	-
Protuberance size	0	mm
Protuberance angle	0	deg
Tip radius coeff.	0.25	-

HINT: See our notebook on planetary gears for help calculating valid tooth counts in a planetary gearset.

Name	Planet Pinion	-
Module _n	2	mm
Pressure angle _n	20	deg
Helix angle	-10	deg
Number of teeth	19	-
Profile shift coeff.	0	-
Bore diameter	20	mm
Work piece dia.	45	mm
Facewidth	25	mm

Cutter Data

Cutting method	Rack generation	-
Pressure angle _n	20	deg
Addendum coeff.	1.25	-
Dedendum coeff.	1.00	-
Protuberance size	0	mm
Protuberance angle	0	deg
Tip radius coeff.	0.25	-

Duplicate Planets

- Add two (2) more instances of *Planet* Wheel to the model by right-clicking it in Feature Tree and select *Duplicate*.
- 2. Notice the duplicate planet gears appear in the **Feature Tree**.
- For clarity, rename each planet by right-clicking it in the Feature Tree and select Rename as shown on right.
- 4. Also create two (2) more instances of *Planet Pinion* and rename each.

HINT: Duplicate gears reference the same library gear. Changes to any instance of the gear affect all references.

Create Shafts

- To create a new shaft, from the Model ribbon tab, click the Shaft button.
- 2. A new shaft is added to the model, as shown in **Feature Tree** and **3D Viewer**.
- 3. Add two (2) more shafts to the model.
- For clarity, you may rename each shaft by right-clicking it in the Feature Tree and select Rename.
 - a. Planet Shaft 1
 - b. Planet Shaft 2
 - c. Planet Shaft 3

HINT: Shafts are conceptual with no geometry to edit. A shaft origin is represented by a sphere in 3D Viewer.

Create Subassemblies

- 1. To create a planet subassembly, we will add planet gears to a shaft.
- 2. In the **Feature Tree**, drag-and-drop a *Planet Wheel* onto its respective *Planet Shaft*.
- 3. Repeat above for the *Planet Pinion*.
- 4. Repeat for each planet subassembly.

HINT: By default, gears are positioned at the shaft origin.

Create Carrier

- 1. To create a carrier, from the **Model** ribbon tab, click the **Carrier** button.
- 2. A new **Carrier Modeler** tab opens.
- 3. Specify a *name* and optionally a *number* and *description*.
- 4. Specify a *pitch circle dia* of 122mm.
- 5. Click the **Add Planet** button three times and select each *Planet Shaft* from the dropdown menus.
- 6. Click \checkmark in upper right to create carrier.

HINT: Carriers are rotational reference frames with eccentrically mounted parts.

Oui	rier Modeler					00 1
Ca	rrier				^	
					2	
om	etry					
Pitch	circle diameter 122	mm				
	nble		Pitch circle	Equal spacing	2 3	
ser						
sen		r (mm)	$oldsymbol{\phi}$ (deg)	z (mm)		
Ser	Planet Shaft 1 V	r (mm)	\$\$\$ (deg)	<i>z</i> (mm)	Assembly	>
⊖ ⊖	Planet Shaft 1 V Planet Shaft 2 V	r (mm)	\$ (deg)	z (mm) 0	Assembly File	>
⊖ ⊖ ⊖	Planet Shaft 1 × Planet Shaft 2 × Planet Shaft 3 ×	r (mm) 61 61 61	φ (deg) 0 120 240	z (mm) 0 0	Assembly File	>

Position Gears

- Right-click the Sun Gear in **3D Viewer**, and select Move.
- 2. A triad appears at the gear origin.
- 3. Drag its z-axis (blue) to 25mm per the display in lower right.
- 4. Repeat this for each *Planet Wheel*.
- 5. Press Esc to exit the move tool.

Position Gears

- 1. Click the *Ring Gear* in **3D Viewer**, and notice the display in lower right.
- 2. Select the GLOBAL z-coordinate field and set its value to -25mm.
- 3. Press Enter to accept the value and observe the updated view.
- 4. Repeat this for each *Planet Pinion*.

TIP: Ctrl + click two gears in 3D Viewer to see valuable information in the bottom right, including if the gears are "meshable" and the center distance for no backlash.

Constrain Planets

- Since each gear is rotationally free, we need to add Weld constraints between each shaft and its gears.
- From the **3D Viewer**, Ctrl + click a *Planet Shaft* and its *Planet Wheel*, then right-click for constraint options, and select **Weld**.
- 3. Repeat above for the *Planet Pinion*.
- 4. Repeat for each planet subassembly, resulting in six (6) *Weld* constraints.

HINT: Alternatively, use the Constrain dialog to choose the constraint type and parts from the dropdown menus.

TIP: To deselect any selected parts, press Esc.

Mesh Gears

- From the Model ribbon tab, click the Constrain button to open dialog.
- 2. Click the **Mesh Search** button to automatically identify gears to mesh.
- 3. Confirm the selected gears to mesh, then click **Add Meshes**.
- 4. Exit the dialog.

TIP: Ctrl + click two gears in 3D Viewer, then right-click to see options to constrain them.

HINT: Every component is considered to be rotationally unconstrained unless specified otherwise.

HINT: Alternatively, choose the constraint type and gears from the dropdown menus, then click **Constrain**.

Add Clutches

- 1. To simulate numerous powerflows, we must define *Clutch* constraints to conditionally constrain parts.
- In the **3D Viewer**, Ctrl + click the *Ground and Ring Gear, then rightclick and select **Clutch**.
- 3. Repeat for *Ground and Carrier.
- 4. No other constraints are required.

***TIP:** To select the *Ground* reference frame, Ctrl + click the background within 3D Viewer.

HINT: Alternatively, use the Constrain dialog to choose the constraint type and parts from the dropdown menus.

TIP: To deselect any selected parts, press Esc.

Review Model

Your model should look like the one below, possibly with different part names.

2021 © Drivetrain Hub LLC

Review Mesh

- From the Model ribbon tab, click the Mesh button to open tab.
- 2. Select a *gear mesh* from the dropdown to examine it.
- 3. Select a *plot type* from dropdown.
- 4. Interactively review gear mesh and plot by **scrolling with mouse** in the gear or plot areas.
- 5. Notice the gear mesh parameters available in the lower right quadrant.

TIP: Right click a gear mesh from the Feature Tree and select Review Mesh to achieve the first two steps above.

Reporting

- From the Model ribbon tab, click the Model button to open a report tab.
- 2. Modeling report is auto-generated.
- 3. Review data for each part, including assembly, constraints, and geometry.
- 4. Review data for each gear mesh, including common and individual gear parameters.

HINT: Alternatively, click the File dropdown and choose Model Report to auto-generate the report.

ANALYZING

Configurations

- 1. From the **Analysis** ribbon tab, click the **Config** button to open dialog.
- 2. A default configuration is added. Rename it as **UNCLUTCHED**.
- Add a configuration by clicking [+] near upper right. Rename it as RING-CLUTCHED and select the Ground • Ring Gear checkbox.
- 4. Add another configuration, rename it **CARRIER-CLUTCHED**, and select the *Ground · Carrier* checkbox.
- 5. Click the **Save All** button.

HINT: To define a load case, as shown later, a configuration must be defined even if no clutches were used.

Config	gurations		e ×
<	RING-CLUTCHED	CARRIER-CLUTCHED ×	> +
CAI	RRIER-CLUTCHED		
Cluto	ch Engagement		
\checkmark	Ground • Carrier		
	Ground • Ring Gear		
		Save All	Cancel

System Loads

- 1. To torsionally constrain the model, we must define the system loads.
- 2. From the **Analysis** ribbon, click the **Load** button.
- 3. Per the notification message, select a part in the **3D Viewer**.
- 4. Click the *Sun Gear* to add a load.
- 5. Repeat for the *Ring Gear* and *Carrier*.

HINT: To cancel the creation of a load, press Esc.

HINT: At *least* 1 input and 1 output load must be defined to torsionally constrain the system with balanced powerflow.

Duty Cycle

- 1. From the **Analysis** ribbon tab, click the **Cases** button to open dialog.
- Specify a duty cycle with name *DC* and click + Duty Cycle button.
- 3. To add load cases to the duty cycle, click its **Edit =** button.

lame 🚽	Notes	Edit Delete
DC		(Ⅲ) □
Name	Notes	+ Duty Cycle

HINT: A *duty cycle* is a collection of *load cases*, i.e. discrete loads, preferably binned from real-world time series data.

Load Cases

- Click the Add Case button to add a load case. Add three (3) cases.
- 2. Edit the table of cases to define the load conditions for the model.
- 3. On completion, exit the dialog.

TIP: To edit the load cases of a duty cycle, double click the duty cycle in the Feature Tree on Analysis tab.

Nume Comp Speed (rpm) Torque (Nm) Power (kW) Speed (rpm) Torque (Nm) LC UN UNCLUTCHED 1000 1000 1000 5000 LC RC RING-CLUTCHED ICO 0000 5000 LC CC CARRIER-CLUTCH ICO 1000 5000	N	lama 🔺	Orași de		Ring Gear		Sun Gear		
LC UN UNCLUTCHED 1000 1000 5 LC RC RING-CLUTCHED Image: Clutched Image: Clutched 1000 5 LC CC CARRIER-CLUTCH Image: Clutched Image	INC	anie 🚽	comig 🖕	Speed (rpm)	Torque (Nm)	Power (kW)	Speed (rpm)	Torque (Nm)	Power (k)
LC RC RING-CLUTCHED V 1000 5 LC CC CARRIER-CLUTCH V 1000 5	- L	_C UN		1000			1000	5	
LC CC CARRIER-CLUTCH V 1000 5	Ŀ	_C RC	RING-CLUTCHED 🗸				1000	5	
	Ŀ	_C CC	CARRIER-CLUTCH V				1000	5	

Name	Config	Hrs	Carrier			Ring Gear			Sun Gear		
Name	comg		rpm	Nm	kW	rpm	Nm	kW	rpm	Nm	kW
LC-UN	UNCLUTCHED	100				1000			1000	5	
LC-RC	RING-CLUTCHED	100							1000	5	
LC-CC	CARRIER-CLUTCHED	100							1000	5	

Run Powerflows

- From the Analysis ribbon tab, click the Powerflow button to open dialog.
- Click the Run ▶ button next to the duty cycle to simulate.
- 3. If the model has been properly defined, it will successfully solve.
- 4. If it failed to solve, review the prior steps in this tutorial.

Run Powerflow		? ×
Name 🌲	Notes	Run
DC		Þ

TIP: Run a duty cycle or load case from the Feature Tree by right clicking it in the *Powerflows* tree and clicking **Run**.

HINT: If the model is modified, outdated results will automatically update when accessing results.

HINT: Notice the load cases in the Feature Tree show \times when unsolved and \square when solved.

Results & Animation

- 1. To interactively review powerflow results, a load case must be *set*.
- 2. From the **Analysis** tab of **Feature Tree**, double click a load case in the *Powerflows* tree to *set* it.
- Select a gear or gear mesh in Feature
 Tree to display certain results in HUD.
- 4. From the **Analysis** ribbon tab, click the **Animate** button to start animation.

TIP: Animate a load case from the Feature Tree by right clicking it in the *Powerflows* tree and clicking **Animate**.

TIP: With a load case set, view results for a gear by selecting it in the 3D Viewer.

HINT: Gear or gear mesh *order*, as shown in HUD, is based on the reference part in Settings, from the Analysis ribbon.

Reporting

- 1. From the **Analysis** ribbon tab, click the **Analysis** button to open a report tab.
- 2. Analysis report is auto-generated.
- 3. Review load case results for the gears and gear meshes, including angular velocities, torques, forces, and frequencies.

HINT: Alternatively, click the File dropdown and choose Analysis Report to auto-generate the report.

			/
Analysis Report	t		
Table of Conte	nts		
DC			
LC UN			
LC RC			
LC CC			
DC - +			
LC UN			
LC RC			
LC CC			
Viewer	🛃 Analysis	×	

INTEGRATIONS

EXPORTS, CONSULTING, & MANUFACTURING

Export Data

Need to evaluate your gears in other software?

Learn how to export data to work with CAD, FE, and other software. Leverage the fully web-based ecosystem of the Gears App to streamline your gear design development.

See tutorial: Model Data and Exports

Design Review

Need an expert to review your design?

Learn how to request services to conduct a design review with independent consultants from our global network at Drivetrain Hub.

See tutorial: Consulting and Manufacturing

Manufacturing

Need to build your gear system?

Learn how to create mockups with our additive manufacturing service, and efficiently communicate with qualified global manufacturers to prototype and mass produce your gears.

See tutorial: Consulting and Manufacturing

What Next?

- → Sign up and start using <u>Gears App</u>.
- → Keep learning with the <u>Tutorial Series</u>.